TP — Administrateur
systeme DevOps

2023-2024

Jérémy OBJOIS

Jérémy OBJOIS

Table des matieres

BlOCS 0@ COMPELENCE ...ttt sttt 3
INEFOTUCTION .ottt bbb bbb bbb 4
SECHION T. CONTEXL ..ottt bbb 4
Section 2. ObJectifs AU MEMOITE ...ttt st sssssans 4
Partie 1. Cahier d@S ChAIGES........ ettt 5
Chapitre 1. Le CONEXE AU PIrOJEL ...ttt nees 5
Chapitre 2. L'identification des DESOINS.........vveiieiere et sasssnses 5
Chapitre 3. LES TIMITES ...ttt sttt nees 5
Chapitre 4. L'enveloppe DUAGELAINE. ...ttt sss s 6
Chapitre 5. LES EIAIS ...ttt sss sttt st nnen 6
Partie 2. Planification et cONCEPLION AU PrOJEL ...t seseees 7
Chapitre 1. La Parti€ DEVOPS. ...t ssssssssssssessesssassssssses 7
Section 1. Les fondements du DEVOPS ... sssesssssssssssssssssssssssssssssssssssssanes 7

§1. Une collaboration et une coOmMmMUNICAtioN OUVEITEc.coccuceuerueeinecieerirerieeeirecieeieresiseenes 7

§2. DES QULOMATISATIONScvuieriiieeiiecie ettt 7

§3. UN fe@dback CONTINU. ...t 8

§84. Une surveillance et une amélioration CONtINUE ... 8
Section 2. La sélection et la justification des outils DEVOPScocwrrenreeneiineeeneeeneeineieseeiseeenne 8

§1. Les outils d'intégration et de déploiement continus (CI/CD)......cc.oovmrrmrereenrenrenrerneennnes 9

A) G ettt 9

B) JENKINS ettt sttt sttt 9

C) OCEAN-BIUE PIUGIN ..ottt 9

Section 2. La CONTENEUIISATION. ..ot ss bbb 10

F N R B o Yol =T SO OO OO 10

B) DOCKEr COMPOSEcoorrimeirrimeirecicieesiseeie s s ssss e s ssss e sssessssesssessen 10

Section 3. L'environnement infrastructure as Code (1aC) : Terraformccocceeeeeveeeeennne. 11
Section 4. L'infrastructure CloUT.........c.iccne e 11
Section 3. La surveillance et I'analyse..........cicineeecneecerececeseeseesese s sesesssessenens 11

A) PIOMETNEUS ...ttt ettt 11

B) GrafANa .ottt sttt sttt 12

Section 5. La sécurité et la qualité du COAE ... 12

A) OWASP .ttt 12

117 ol

B) SONAIQUDE ...ttt ettt s et s 13

Section 6. L'environnement de développement et I'outil de programmation.................. 13

A) ViSUAl STUIO COAR (BT GIt) ettt ees e ssessesessesss e ssss s s s eseeas 13

B) XAMPP .ottt 13
Chapitre 2. La partie OPEratioNns ... sssesses 14
Chapitre 3. La partie DEVEIOPPEMENT ...t s st ss s s seses 14
Partie 3. Mise en ceuvre : les Méthodologies ULIlISEES ... 15
Section 1. La MELhOAE AGILE ... ssssesss st esses s ssssseses 15
Section 2. La MEthode KANBANttt 15
Section 3. Le diagramme de GANTT ...t sssesse s s ss s ssse e 16
Partie 4. RESUILALS.oureeeceeeeeereceieiie et ess s ss et ss st bbb 16
CONCIUSTON et bbb 17
2/17 ol

Jeérémy OBJOIS

Blocs de compétence

CCP1 : Automatiser le déploiement d’un infra-cloud

e Automatiser la création de serveurs a I'aide de scripts
e Automatiser le déploiement d'une infrastructure
e Sécuriser l'infrastructure

CCP2 : Déployer en continu une application

e Préparer un environnement de test

e Gérer le stockage des données

e Gérer les containers

e Automatiser la mise en production d'une application avec plateforme

CCP3 : Superviser les services déployés

e Définir et mettre en place des statistiques services
e Exploiter une solution de supervision
e Echanger sur des réseaux professionnels éventuellement en anglais

3/17 £

Jeérémy OBJOIS

Introduction

Dans un contexte ou la responsabilité environnementale est devenue un enjeu majeur,
les entreprises industrielles sont de plus en plus incitées a intégrer des pratiques durables dans
leurs processus.

Le projet présenté dans ce mémoire a été réalisé au sein d'une entreprise industrielle
de taille internationale, spécialisée dans les matériaux de construction. Cette organisation
souhaite améliorer la mesure et le suivi de I'empreinte carbone de ses produits.

Afin de répondre a ce besoin, une approche DevOps a été retenue. Elle vise a concevoir
et déployer une application cloud permettant de calculer I'empreinte carbone des produits en
fonction de leur fabrication et de leur transport, tout en garantissant automatisation, sécurité
et supervision des services.

Ce mémoire vise a explorer l'utilisation du DevOps dans le cadre du développement
d'une application de calcul d'empreinte carbone, avec les objectifs suivants :

e Optimiser le développement de l'application tout en réduisant les délais et en
améliorant la qualité et la performance de celle-ci.

e Surmonter les obstacles liés a 'intégration de DevOps au sein du contexte défini.

e Evaluer les bénéfices environnementaux potentiels liés a I'utilisation de I'application.

Ce mémoire abordera ces différents points a travers un examen précis des étapes de
planification, de mise en ceuvre et d'évaluation. Il documentera chaque phase du processus et
de son impact sur 'efficacité environnementale de I'entreprise.

o

Jeérémy OBJOIS

4/17

Partie 1. Cahier des charges

Comme évoqué précédemment, I'entreprise d'accueil est fortement engagée dans une
démarche de transition environnementale. Elle s'est notamment fixée pour objectif de réduire
significativement I'empreinte carbone de ses produits industriels a I'horizon 2030, ainsi que
d'atteindre la neutralité carbone a plus long terme.

Dans ce contexte, |'entreprise souhaite disposer d'une application dédiée au calcul de
I'empreinte carbone de ses produits, intégrant a la fois les parametres de fabrication et de
transport.

Problématique : Comment lintégration des pratiques DevOps peut-elle faciliter le
développement et l'opérationnalisation d'une application de calcul d’empreinte carbone, tout en
contribuant aux objectifs de développement durable de l'entreprise ?

Pour réaliser la satisfaction de cette demande, nous devons analyser les besoins :

- Concernant la partie Opérations, la création de |'application nécessitera la mise en
place d'une infrastructure cloud adéquate, permettant d'héberger I'application et
d'offrir un acces facile aux utilisateurs.

L'utilisation des outils du DevOps (CI/CD) sera également nécessaire afin d'automatiser
les processus et de garantir une intégration et une surveillance fluide et continue.

- Concernant la partie Développement, |'application devra étre capable de calculer
I'empreinte carbone de la fabrication du produit, ainsi que son transport. Elle devra étre
agréable a visualiser et rapide.

Concernant la partie Développement, j'ai choisi de me focaliser sur 'empreinte carbone
émise par la fabrication du produit (scope 1), ainsi que le celle du transport (scope 3). En effet,
lors du calcul de I'empreinte carbone, la fabrication du produit (scope 1) est la partie la plus

' Les scopes sont les différents périmeétres qui forment I'empreinte carbone.

o

Jeérémy OBJOIS

5/17

importante. Pour ce qui est du scope 3, c'est-a-dire le transport, il s'agit de I'élément le plus
pertinent parmi les autres éléments qui y figurent.

Ainsi, je ne calculerai pas I'empreinte carbone émise par |'électricité lors de la fabrication
des produits, qui correspond au scope 2. J'6terai aussi tous les autres éléments appartenant
aux scopes 1, 2 et 3. Le schéma ci-dessous expose mes choix.

Application

Elément le plus im}ortant du Scope 1 Elément pn‘ncral du scop\lgsre

Scope 1: Fabrication du produit Scope 3: Transport Scope 2: Electricite

J

Calcul Calcul Autres eéléments du Scope 1 et 3

Empreinte carbone Autres éléments

SCHEMA DES SCOPES CHOISIS ET IGNORES POUR LE DEVELOPPEMENT DE L’APPLICATION

Dans le cadre de cette réalisation, un budget dédié a été alloué par I'entreprise afin de
mettre en place l'infrastructure nécessaire au projet, incluant la location de ressources cloud
adaptées aux besoins de I'application.

Concernant le délai, je n'ai pas eu de délai prévu. Pour autant, je me suis fixé comme
objectif de terminer le projet avant le 1" mai 2024, en concordance avec mon alternance.

Finalement, nous avons défini le projet. Il est temps d'aborder sa planification et sa
conception.

6/’I 7 Jérém‘yﬁBJCIS

Partie 2. Planification et conception du projet

Pour traiter la planification et la conception du projet, nous aborderons d'abord la partie
du DevOps, avant celle de l'infrastructure cloud. Nous terminerons par I'application.

Nous avons beaucoup évoqué le terme de DevOps. Mais que signifie-t-il vraiment ?

Fusion de « Développement » (Dev) et d'« Opérations » (Ops), le DevOps se présente
comme une philosophie et une pratique qui vise a renforcer la collaboration entre les équipes
du développement logiciel et les équipes responsables des opérations informatiques. Cette
philosophie a pour objectif d'accélérer le processus de livraison du logiciel, tout en rehaussant
la qualité et la stabilité de ce méme logiciel.

Le DevOps repose sur plusieurs principes clés que nous allons désormais présenter.

§1. Une collaboration et une communication ouverte

Le DevOps repose d'abord sur une culture de collaboration et de communication
ouverte. En effet, les équipes de développement et d'opérations travaillent ensemble dans un
objectif commun. Cela permet d'optimiser la cohérence du travail et de réduire les délais de
déploiement.

Dans ce modele, la communication transparente est cruciale. Les équipes doivent
échanger des informations, partager leurs objectifs et collaborer de maniere étroite afin de
répondre aux besoins métier. L'utilisation d'outils de communication modernes et de tableaux
de bord partagés facilite la compréhension et réduit les risques de conflits.

§2. Des automatisations

L'automatisation constitue un autre axe majeur du DevOps. Elle permet de fluidifier les
processus, d'améliorer la fiabilité et d'accélerer le cycle de livraison. D'une part, les equipes
peuvent se concentrer sur des taches générant davantage de valeur, ce qui améliore I'utilisation
des ressources techniques, d'autre part, I'automatisation renforce la fiabilité en éliminant les
erreurs liées aux processus manuels.

u

Jeérémy OBJOIS

7/17

Les pipelines® CI/CD (Intégration Continue/Déploiement Continu) automatisent les
étapes du cycle de développement et garantissent des déploiements fréquents, sécurisés et
uniformes.

L'intégration continue (Cl)®> permet une validation systématique du code et de sa
compatibilité aprés chaque modification, tandis que le déploiement continu (CD)* assure une
mise en production fluide et automatique des versions qui ont été validées par I'intégration
continue.

§3. Un feedback continu

Le feedback continu’, recueilli auprés des utilisateurs et des équipes internes, est
indispensable a I'amélioration continue des services et produits. || permet d'adapter
rapidement les solutions aux besoins, en intégrant les retours dans le cycle de développement.

&4. Une surveillance et une amélioration continue

Enfin, la surveillance proactive est essentielle pour gérer efficacement les systemes
informatiques. Au lieu de réagir aux problémes une fois que ceux-ci sont survenus, le DevOps
favorise une veille continue sur les performances, I'utilisation des ressources et la santé globale
des systéemes. Cette stratégie préventive vise a anticiper les dysfonctionnements avant méme
qu'ils n'affectent I'expérience de l'utilisateur.

Les métriques collectées (santé des systemes, disponibilité des services, temps de
réponse des applications...) offrent un apercu fiable sur les points forts et les axes
d'amélioration. En d'autres termes, elles permettent d'ajuster les processus et de prévenir les
problemes futurs.

Maintenant que nous venons de définir le DevOps et sa philosophie, abordons les outils
du DevOps que j'ai sélectionné pour répondre a la demande de Terreal.

2 L'ensemble des outils et des processus de développement d'un logiciel.
3 Etapes de planification, de compilation et de tests automatisés.

4 Déploiement du code.

> Feedback signifie « retour » en francais.

o

Jeérémy OBJOIS

8/17

Pour réaliser notre objectif de mise en place d'une application dans le cloud calculant
I'empreinte carbone des produits de I'entreprise, j'ai établi une liste d'outils DevOps que je vais
présenter et justifier. Commencgons par les outils d'intégration et de déploiement continus.

§1. Les outils d'intégration et de déploiement continus (Cl/CD)

Les outils de CI/CD sont ceux qui permettent aux équipes de développer, tester, et
déployer des applications rapidement, de maniere automatique. Parmi les outils qui existent,
j'ai sélectionné GitLab et Jenkins.

GitLab est une plateforme en ligne qui a pour objectif de gérer les cycles de vie du
développement d'un logiciel. Elle utilise le systeme de controle de version « Git », et elle permet
d'introduire du code et de le déployer a I'aide de pipelines.

Mais ce qui distingue GitLab, et c'est la raison pour laquelle je I'ai sélectionné, est son
intégration de fonctionnalités supplémentaires. En effet, GitLab offre une intégration native de
Cl/CD, ce qui signifie que les équipes de développement peuvent configurer des pipelines
automatisés pour exécuter des tests, et déployer du code directement depuis l'interface de
GitLab. Autrement dit, il n'y a pas besoin de solutions tierces.

Jenkins est quant a lui est un outil open-source d'automatisation des pipelines.

La raison pour laquelle j'ai choisi Jenkins réside dans le fait qu'il s'agit d'une plateforme
qui comporte une flexibilité dans ses pipelines et de nombreux plugins. Ainsi, Jenkins me
permettra de déployer mon application a I'aide de pipelines, tandis que les plugins m'offriront
la possibilité d'intégrer des outils externes nécessaires pour la réalisation du projet (tels que
SonarQubes, OWASP, ou encore Ocean-Blue).

J'ai décidé d'ajouter a Jenkis le plug-in Ocean-Blue, afin de permettre a nos équipes
d’avoir une visibilité graphique et simplifiée des pipelines CI/CD que nous allons effectuer.

Passons maintenant a la conteneurisation.

9/17

Jeérémy OBJOIS

Section 2. La conteneurisation

Pour ce qui est de la conteneurisation, j'ai choisi d'associer Docker et Docker Compose.

Docker est une plateforme qui permet de lancer des applications dans des conteneurs
logiciels.

Selon la firme de recherche sur l'industrie 451 Research®, « Docker est un outil qui peut
empaqueter une application et ses dépendances dans un conteneur isolé, qui pourra étre exécuté
sur n'importe quel serveur ». Autrement dit, avec Docker, il est possible de packager une
application avec toutes ses dépendances dans un conteneur virtuel et d'exécuter cette
application sur n'importe quel systéme. Nous pourrons donc exécuter notre application de
calcul d’empreinte carbone a I'aide de Docker sans se poser de question quant au systeme.

Mais si Docker est utilisé pour packager une application dans un conteneur, Docker
Compose permet, lui, de packager plusieurs conteneurs Docker en méme temps. Et c'est ce qui
nous intéresse.

Docker Compose est un outil open-source congu pour gérer des applications
conteneurisées ou multiconteneurs. Concretement, il permet aux développeurs de gérer des
environnements avec plusieurs conteneurs Docker a I'aide de fichiers de configuration YAML.

Nous utiliserons donc Docker Compose afin de gérer les conteneurs Docker de notre
application, et créerons un fichier YAML qui comprendra les instructions pour gérer les
conteneurs d'Apache (de I'application web) et de MYSQL (du serveur de base de données) de
notre application.

Aprés la conteneurisation, passons a la gestion de configuration d'infrastructure as
Code avec Terraform.

® Une société de recherche technologique qui fournit des analyses approfondies sur les tendances du
marché.

o

Jeérémy OBJOIS

10/17

Section 3. L’'environnement infrastructure as Code (laC) : Terraform

Terraform est un environnement logiciel d'« infrastructure as code »’ qui permet de
créer des topologies cloud et de les appliquer sur AWS.

J'ai sélectionné Terraform pour plusieurs raisons: d'une part, pour sa pleine
compatibilité avec le fournisseur de cloud que j'ai choisi, ainsi qu'avec GitLab. Nos équipes
pourront ainsi définir l'infrastructure cloud de notre projet sans avoir a se soucier d'éventuels
problemes de compatibilité. D'autre part, Terraform offre une approche de gestion de
l'infrastructure en tant que code, ce qui facilitera l'automatisation des processus de
déploiement et de gestion.

Terraform sera donc utilisé pour appliquer l'infrastructure cloud.

Section 4. Uinfrastructure cloud

Un fournisseur de cloud public propose des services d'infrastructure permettant le
déploiement d’environnements applicatifs flexibles, évolutifs et hautement disponibles.

Les services de calcul et de stockage mis a disposition constituent une base adaptée a
la mise en ceuvre d'architectures cloud orientées automatisation, scalabilité et résilience, en
cohérence avec une démarche DevOps.

Le choix de cette solution cloud repose sur plusieurs criteres techniques, notamment la
fiabilité de l'infrastructure, la capacité d'adaptation aux variations de charge, ainsi que la
possibilité de supporter un environnement CI/CD dynamique, répondant aux besoins du projet.

Le fournisseur de cloud et son architecture ayant été définis, la section suivante aborde
les mécanismes de surveillance et de supervision mis en place.

Section 3. La surveillance et I'analyse

Pour surveiller notre infrastructure cloud, j'ai décidé de combiner Prometheus et
Grafana.

"Il s'agit d’une approche ou l'infrastructure informatique est gérée et provisionnée a I'aide de code et
de scripts plutét que de processus manuels.

u

Jeérémy OBJOIS

11/17

Prometheus est un logiciel libre de surveillance informatique qui peut générer des
alertes. Sa compétence est d'enregistrer des métriques® en temps réel dans une base de
données. Ces métriques peuvent ensuite étre interrogées a l'aide d'un langage de requéte et
analysées. Elles donnent des indications sur leur cible.

Prometheus nous permettra de cibler nos machines EC2 et de les analyser grace a
I'enregistrement de leur métrique. Prometheus sera combiné a Grafana.

Grafana est un logiciel libre qui permet de réaliser des tableaux de bord et des
graphiques depuis des bases de données générées par Prometheus.

En résumé, Prometheus collectera et stockera des métriques, tandis que Grafana
permettra de visualiser ces données a travers des tableaux de bord interactifs.

La combinaison de Prometheus pour la collecte de métriques en temps réel, et de
Grafana pour la visualisation des données, créera un systeme de surveillance complet qui
permettra a nos équipes de surveiller facilement la performance des applications et de notre
infrastructure cloud.

La surveillance de nos systemes ayant été définie, passons a la sécurité et a la qualité
de notre code.

Section 5. La sécurité et la qualité du code

En ce qui concerne la sécurité et la qualité du code, jai sélectionné OWASP et
SonarQube’.

OWASP est un outil qui permet d'identifier les vulnérabilités de sécurité des applications
web et de publier des recommandations pour les sécuriser.

J'utiliserai OWASP pour m'assurer que |'application ne disposera d'aucune vulnérabilité
de sécurité.

8 Une mesure quantitative utilisée pour évaluer, surveiller ou quantifier différents aspects d'un systeme.
9 Trivy, qui analysera l'application conteneurisée, sera abordée plus loin.

o

Jeérémy OBJOIS

12/17

Comme je I'ai mentionné, OWASP sera couplé a SonarQube.

SonarQube est un logiciel libre qui aide a détecter et a résoudre des problémes de
sécurité dans le code source d'une application. Pour ce faire, SonarQube exécute des analyses
dans le code afin de détecter les bugs, vulnérabilités, et mauvaises pratiques de codage.

SonaQube va nous permettre de sécuriser notre application et de fournir une fenétre
contenant les mises a jour a effectuer et les problemes potentiels. Associé a OWASP,
SonarQube ajoutera une couche « cyber » a notre pipeline.

La couche «cyber » ayant été définie, il ne reste plus qu'a choisir nos outils de
développement et notre environnement de test pour notre application.

Section 6. L'environnement de développement et I'outil de programmation

Pour créer mon environnement de test, j'ai choisi d'associer Visual Studio Code avec
XAMPP,

Visual Studio Code est un éditeur de code source populaire développé par Microsoft. |l
offre des débogages intégrés, dispose d'un support natif pour Git et surtout d'une interface
agréable a utiliser.

Couplé a Git, Visual Studio Code me permettra de coder I'application de maniére
confortable grace a ces nombreuses fonctionnalités pratiques. De plus, en associant cet éditeur
a XAMPP, il me sera facile de tester les développements en local avant de les déployer.

XAMPP est une distribution de logiciel qui permet de configurer un environnement de
développement local complet, notamment avec PHP, MySQL, et Apache.

u

Jeérémy OBJOIS

13/17

XAMPP est particulierement utile pour tester et déployer des applications web en local
avant de les mettre en production. En résumé, je combinerai Visual Studio Code pour créer
I'application de I'entreprise et XAMPP pour tester cette application.

La partie qui concernait le DevOps et sa sélection d'outils étant terminée, voyons a
présent comment tous ces outils vont s'articuler au sein de la partie Opérations.

L'architecture de linfrastructure cloud repose sur une séparation claire des
responsabilités entre le code applicatif et I'infrastructure.

Le développeur DevOps travaille a partir d'un environnement local et utilise un systeme
de gestion de versions pour maintenir deux ensembles distincts :

— la définition de l'infrastructure sous forme d'Infrastructure as Code,
— le code source de l'application.

L'infrastructure est déployée de maniére automatisée via des pipelines CI/CD,
permettant le provisionnement dynamique des ressources cloud nécessaires a I'exécution des
services.

Le cycle de livraison applicative integre des étapes d'analyse de qualité, de contrdles de
sécurité et de déploiement automatisé, garantissant une mise en production fiable et
reproductible.

Une solution de supervision centralisée permet de surveiller I'état des services, les
performances et la disponibilité de l'infrastructure, afin d'assurer un suivi continu et d'anticiper
les incidents.

Cette architecture illustre une approche DevOps complete, combinant automatisation,
supervision et qualité logicielle, tout en restant indépendante des détails d'implémentation
spécifiques.

Abordons a présent la partie Développement.

Comme défini précédemment, I'application devra étre capable de calculer I'empreinte
carbone émise par la fabrication du produit et par son trajet. Pour ce faire, j'ai décidé de
disposer |'application en deux pages principales :

u

Jeérémy OBJOIS

14/17

- Une premiere page dans laquelle l'utilisateur sélectionnera a l'aide de champs le
produit et son lieu de fabrication, ainsi que le mode de transport. Un bouton
« Calculer » sera mis en évidence.

- Une seconde page affichant le résultat du calcul.

L'application fonctionnera a I'aide de Docker Compose.

Les scripts d'infrastructure, pipelines Cl/CD et fichiers de configuration ont été
volontairement simplifiés et non publiés dans ce portfolio.

Pour mettre en ceuvre toutes ces opérations, j'ai eu recours a trois méthodologies.

Partie 3. Mise en ceuvre : les méthodologies utilisées

Durant l'intégralité de mon projet, j'ai effectivement associé trois méthodologies : la
méthode AGILE, la méthode KANBAN, et le diagramme de GANTT.

La premiere méthode que j'ai utilisée a été la méthode AGILE. L'idée était de diviser le
travail en petites portions (appelées sprints) afin d'ajuster les taches a faire et d'avoir un
feedback sur ce qui avait été fait. Les réunions nous ont permis de travailler de maniere fluide
et étroite entre les différentes équipes, et de parvenir a terminer le projet dans le temps imparti.

En plus de la méthode AGILE, j'ai utilise la méthode KANBAN. Cette methode, basée sur
les taches a faire, celles en cours d'exécution et celles réalisées, nous a permis de définir les
taches a planifier pour chaque équipe. En outre, notre tableau permettait d'avoir un visuel de
I'état d'avancement du projet et d’en discuter lors des réunions AGILES.

15/17

Jeérémy OBJOIS

O Ready [e O Inprogress 1 2 O In review 3 O Done &

Demander 'affinage des données

Enfin, parallelement aux méthodes AGILES, et KANBAN, jai utilisé le diagramme de
GANTT. Cela a permis a I'ensemble de nos équipes d'avoir une visibilité générale des taches
réalisées en fonction du temps. Et de méme qu’avec le tableau KANBAN, nous avons pu
prendre appui sur le diagramme de GANTT lors des réunions AGILES pour ajuster la
planification des taches et estimer la fin du projet.

La mise en ceuvre étant achevée, il ne reste plus qu'a vérifier que I'application est
opérationnelle avec les résultats.

Partie 4. Résultats

Lors de notre test, I'acces au site a fonctionné sans probleme.

L'application se présente alors sous la forme d'une liste de formulaires (Type de produit,
Mode de transport...) a sélectionner ou a remplir, et d'un bouton « Calculer ».

Une fois les opérations effectuées, la deuxieme page s'affiche et annonce I'empreinte
carbone émise en fonction des critéres sélectionnés par I'utilisateur. La barre latérale affiche
I'historique des derniers calculs effectués.

Apres plusieurs tests, le site semble assez rapide, I'interface répond bien aux
manipulations de l'utilisateur et le résultat affiché est cohérent. Les tests réalisés ont permis de
valider le bon fonctionnement global de I'application dans le cadre du projet.

16/17 £

Jeérémy OBJOIS

Conclusion

Finalement, les résultats obtenus a la suite de l'utilisation de l'application sont tres
positifs, en particulier sur l'impact environnemental. En effet, grace a [Iutilisation de
I'application, I'entreprise a pu optimiser ses processus de production et de transport, et réduire
son empreinte carbone globale.

De plus, Iintroduction de I'application a sensibilisé les employés a I'importance de la
durabilité et les a incités a adopter des pratiques plus respectueuses de I'environnement dans
leur travail quotidien.

En conclusion, on peut affirmer que l'intégration des pratiques de DevOps et le
développement de I'application ont permis a I'entreprise de réaliser un bénéfice dans sa quéte
d'une construction plus durable, prouvant que le DevOps pouvait étre un puissant levier pour
la transition écologique dans le secteur des matériaux de construction.

Ce document constitue une version adaptée pour un usage portfolio.
Les informations sensibles ont été volontairement anonymisées ou simplifiées.

o

Jeérémy OBJOIS

17/17

